Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization.

Identifieur interne : 001804 ( Main/Exploration ); précédent : 001803; suivant : 001805

Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization.

Auteurs : Yoshiaki Kamada [Japon] ; Yuko Fujioka ; Nobuo N. Suzuki ; Fuyuhiko Inagaki ; Stephan Wullschleger ; Robbie Loewith ; Michael N. Hall ; Yoshinori Ohsumi

Source :

RBID : pubmed:16055732

Descripteurs français

English descriptors

Abstract

The target of rapamycin (TOR) protein kinases, Tor1 and Tor2, form two distinct complexes (TOR complex 1 and 2) in the yeast Saccharomyces cerevisiae. TOR complex 2 (TORC2) contains Tor2 but not Tor1 and controls polarity of the actin cytoskeleton via the Rho1/Pkc1/MAPK cell integrity cascade. Substrates of TORC2 and how TORC2 regulates the cell integrity pathway are not well understood. Screening for multicopy suppressors of tor2, we obtained a plasmid expressing an N-terminally truncated Ypk2 protein kinase. This truncation appears to partially disrupt an autoinhibitory domain in Ypk2, and a point mutation in this region (Ypk2(D239A)) conferred upon full-length Ypk2 the ability to rescue growth of cells compromised in TORC2, but not TORC1, function. YPK2(D239A) also suppressed the lethality of tor2Delta cells, suggesting that Ypks play an essential role in TORC2 signaling. Ypk2 is phosphorylated directly by Tor2 in vitro, and Ypk2 activity is largely reduced in tor2Delta cells. In contrast, Ypk2(D239A) has increased and TOR2-independent activity in vivo. Thus, we propose that Ypk protein kinases are direct and essential targets of TORC2, coupling TORC2 to the cell integrity cascade.

DOI: 10.1128/MCB.25.16.7239-7248.2005
PubMed: 16055732
PubMed Central: PMC1190227


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization.</title>
<author>
<name sortKey="Kamada, Yoshiaki" sort="Kamada, Yoshiaki" uniqKey="Kamada Y" first="Yoshiaki" last="Kamada">Yoshiaki Kamada</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology, National Institute for Basic Biology, Maiodaiji-Cho, Okazaki, Japan. yoshikam@nibb.ac.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Cell Biology, National Institute for Basic Biology, Maiodaiji-Cho, Okazaki</wicri:regionArea>
<wicri:noRegion>Okazaki</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fujioka, Yuko" sort="Fujioka, Yuko" uniqKey="Fujioka Y" first="Yuko" last="Fujioka">Yuko Fujioka</name>
</author>
<author>
<name sortKey="Suzuki, Nobuo N" sort="Suzuki, Nobuo N" uniqKey="Suzuki N" first="Nobuo N" last="Suzuki">Nobuo N. Suzuki</name>
</author>
<author>
<name sortKey="Inagaki, Fuyuhiko" sort="Inagaki, Fuyuhiko" uniqKey="Inagaki F" first="Fuyuhiko" last="Inagaki">Fuyuhiko Inagaki</name>
</author>
<author>
<name sortKey="Wullschleger, Stephan" sort="Wullschleger, Stephan" uniqKey="Wullschleger S" first="Stephan" last="Wullschleger">Stephan Wullschleger</name>
</author>
<author>
<name sortKey="Loewith, Robbie" sort="Loewith, Robbie" uniqKey="Loewith R" first="Robbie" last="Loewith">Robbie Loewith</name>
</author>
<author>
<name sortKey="Hall, Michael N" sort="Hall, Michael N" uniqKey="Hall M" first="Michael N" last="Hall">Michael N. Hall</name>
</author>
<author>
<name sortKey="Ohsumi, Yoshinori" sort="Ohsumi, Yoshinori" uniqKey="Ohsumi Y" first="Yoshinori" last="Ohsumi">Yoshinori Ohsumi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16055732</idno>
<idno type="pmid">16055732</idno>
<idno type="doi">10.1128/MCB.25.16.7239-7248.2005</idno>
<idno type="pmc">PMC1190227</idno>
<idno type="wicri:Area/Main/Corpus">001828</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001828</idno>
<idno type="wicri:Area/Main/Curation">001828</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001828</idno>
<idno type="wicri:Area/Main/Exploration">001828</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization.</title>
<author>
<name sortKey="Kamada, Yoshiaki" sort="Kamada, Yoshiaki" uniqKey="Kamada Y" first="Yoshiaki" last="Kamada">Yoshiaki Kamada</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology, National Institute for Basic Biology, Maiodaiji-Cho, Okazaki, Japan. yoshikam@nibb.ac.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Cell Biology, National Institute for Basic Biology, Maiodaiji-Cho, Okazaki</wicri:regionArea>
<wicri:noRegion>Okazaki</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fujioka, Yuko" sort="Fujioka, Yuko" uniqKey="Fujioka Y" first="Yuko" last="Fujioka">Yuko Fujioka</name>
</author>
<author>
<name sortKey="Suzuki, Nobuo N" sort="Suzuki, Nobuo N" uniqKey="Suzuki N" first="Nobuo N" last="Suzuki">Nobuo N. Suzuki</name>
</author>
<author>
<name sortKey="Inagaki, Fuyuhiko" sort="Inagaki, Fuyuhiko" uniqKey="Inagaki F" first="Fuyuhiko" last="Inagaki">Fuyuhiko Inagaki</name>
</author>
<author>
<name sortKey="Wullschleger, Stephan" sort="Wullschleger, Stephan" uniqKey="Wullschleger S" first="Stephan" last="Wullschleger">Stephan Wullschleger</name>
</author>
<author>
<name sortKey="Loewith, Robbie" sort="Loewith, Robbie" uniqKey="Loewith R" first="Robbie" last="Loewith">Robbie Loewith</name>
</author>
<author>
<name sortKey="Hall, Michael N" sort="Hall, Michael N" uniqKey="Hall M" first="Michael N" last="Hall">Michael N. Hall</name>
</author>
<author>
<name sortKey="Ohsumi, Yoshinori" sort="Ohsumi, Yoshinori" uniqKey="Ohsumi Y" first="Yoshinori" last="Ohsumi">Yoshinori Ohsumi</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="ISSN">0270-7306</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actins (chemistry)</term>
<term>Actins (metabolism)</term>
<term>Alleles (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Cell Cycle Proteins (metabolism)</term>
<term>Cell Cycle Proteins (physiology)</term>
<term>Cell Proliferation (MeSH)</term>
<term>Cytoskeleton (metabolism)</term>
<term>Electrophoresis, Polyacrylamide Gel (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Immunoprecipitation (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Phosphatidylinositol 3-Kinases (physiology)</term>
<term>Phosphorylation (MeSH)</term>
<term>Plasmids (metabolism)</term>
<term>Point Mutation (MeSH)</term>
<term>Protein Kinases (metabolism)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Temperature (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Actines (composition chimique)</term>
<term>Actines (métabolisme)</term>
<term>Allèles (MeSH)</term>
<term>Cytosquelette (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Immunoprécipitation (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Mutation ponctuelle (MeSH)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Phosphatidylinositol 3-kinases (physiologie)</term>
<term>Phosphorylation (MeSH)</term>
<term>Plasmides (métabolisme)</term>
<term>Prolifération cellulaire (MeSH)</term>
<term>Protein kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines du cycle cellulaire (métabolisme)</term>
<term>Protéines du cycle cellulaire (physiologie)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Température (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Électrophorèse sur gel de polyacrylamide (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Actins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Actins</term>
<term>Cell Cycle Proteins</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Protein Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>Phosphatidylinositol 3-Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Actines</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytoskeleton</term>
<term>Plasmids</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Actines</term>
<term>Cytosquelette</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Plasmides</term>
<term>Protein kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du cycle cellulaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Phosphatidylinositol 3-kinases</term>
<term>Protéines du cycle cellulaire</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Amino Acid Sequence</term>
<term>Cell Proliferation</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Immunoprecipitation</term>
<term>Models, Genetic</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Phosphorylation</term>
<term>Point Mutation</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Homology, Amino Acid</term>
<term>Signal Transduction</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Allèles</term>
<term>Données de séquences moléculaires</term>
<term>Immunoprécipitation</term>
<term>Modèles génétiques</term>
<term>Mutation</term>
<term>Mutation ponctuelle</term>
<term>Phosphorylation</term>
<term>Prolifération cellulaire</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Température</term>
<term>Transduction du signal</term>
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The target of rapamycin (TOR) protein kinases, Tor1 and Tor2, form two distinct complexes (TOR complex 1 and 2) in the yeast Saccharomyces cerevisiae. TOR complex 2 (TORC2) contains Tor2 but not Tor1 and controls polarity of the actin cytoskeleton via the Rho1/Pkc1/MAPK cell integrity cascade. Substrates of TORC2 and how TORC2 regulates the cell integrity pathway are not well understood. Screening for multicopy suppressors of tor2, we obtained a plasmid expressing an N-terminally truncated Ypk2 protein kinase. This truncation appears to partially disrupt an autoinhibitory domain in Ypk2, and a point mutation in this region (Ypk2(D239A)) conferred upon full-length Ypk2 the ability to rescue growth of cells compromised in TORC2, but not TORC1, function. YPK2(D239A) also suppressed the lethality of tor2Delta cells, suggesting that Ypks play an essential role in TORC2 signaling. Ypk2 is phosphorylated directly by Tor2 in vitro, and Ypk2 activity is largely reduced in tor2Delta cells. In contrast, Ypk2(D239A) has increased and TOR2-independent activity in vivo. Thus, we propose that Ypk protein kinases are direct and essential targets of TORC2, coupling TORC2 to the cell integrity cascade.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16055732</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>09</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0270-7306</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>25</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2005</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization.</ArticleTitle>
<Pagination>
<MedlinePgn>7239-48</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The target of rapamycin (TOR) protein kinases, Tor1 and Tor2, form two distinct complexes (TOR complex 1 and 2) in the yeast Saccharomyces cerevisiae. TOR complex 2 (TORC2) contains Tor2 but not Tor1 and controls polarity of the actin cytoskeleton via the Rho1/Pkc1/MAPK cell integrity cascade. Substrates of TORC2 and how TORC2 regulates the cell integrity pathway are not well understood. Screening for multicopy suppressors of tor2, we obtained a plasmid expressing an N-terminally truncated Ypk2 protein kinase. This truncation appears to partially disrupt an autoinhibitory domain in Ypk2, and a point mutation in this region (Ypk2(D239A)) conferred upon full-length Ypk2 the ability to rescue growth of cells compromised in TORC2, but not TORC1, function. YPK2(D239A) also suppressed the lethality of tor2Delta cells, suggesting that Ypks play an essential role in TORC2 signaling. Ypk2 is phosphorylated directly by Tor2 in vitro, and Ypk2 activity is largely reduced in tor2Delta cells. In contrast, Ypk2(D239A) has increased and TOR2-independent activity in vivo. Thus, we propose that Ypk protein kinases are direct and essential targets of TORC2, coupling TORC2 to the cell integrity cascade.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kamada</LastName>
<ForeName>Yoshiaki</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, National Institute for Basic Biology, Maiodaiji-Cho, Okazaki, Japan. yoshikam@nibb.ac.jp</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fujioka</LastName>
<ForeName>Yuko</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Suzuki</LastName>
<ForeName>Nobuo N</ForeName>
<Initials>NN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Inagaki</LastName>
<ForeName>Fuyuhiko</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wullschleger</LastName>
<ForeName>Stephan</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Loewith</LastName>
<ForeName>Robbie</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hall</LastName>
<ForeName>Michael N</ForeName>
<Initials>MN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ohsumi</LastName>
<ForeName>Yoshinori</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000199">Actins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="C060388">YPK2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C081135">TOR2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000199" MajorTopicYN="N">Actins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003599" MajorTopicYN="N">Cytoskeleton</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047468" MajorTopicYN="N">Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017354" MajorTopicYN="N">Point Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16055732</ArticleId>
<ArticleId IdType="pii">25/16/7239</ArticleId>
<ArticleId IdType="doi">10.1128/MCB.25.16.7239-7248.2005</ArticleId>
<ArticleId IdType="pmc">PMC1190227</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1999 Nov 26;274(48):34493-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1999 Feb 25;9(4):186-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Jun;20(12):4411-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10825204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Sep 18;150(6):1507-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10995454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2001 May;39(3):166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11409178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 May 17;18(10):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Aug 2;18(15):4210-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10428959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1999 Jul;35(6):585-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10467002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Dec 3;20(23):6783-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11726514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2002 Jan 21;156(2):241-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11807089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Mar;22(5):1329-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11839800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Apr 2;12(7):588-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11937029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Apr 16;12(8):632-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jul 25;418(6896):387-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12140549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Aug;161(4):1453-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12196392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Sep;13(9):3005-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2003 Feb;4(2):117-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12563289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Apr 1;17(7):859-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 2;278(18):15461-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12604610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 6;278(23):20457-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Jun 16;22(12):3073-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Nov;14(11):4676-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14593073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci STKE. 2003 Dec 9;2003(212):re15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Mar;15(3):1101-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14699058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Oct 1;23(19):3747-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15372071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1993 Jan;236(2-3):443-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8437590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1995 Jul 1;9(13):1559-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7628692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8943012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Feb 21;88(4):531-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9038344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Jan;148(1):99-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9475724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Dec;19(12):8344-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567559</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Fujioka, Yuko" sort="Fujioka, Yuko" uniqKey="Fujioka Y" first="Yuko" last="Fujioka">Yuko Fujioka</name>
<name sortKey="Hall, Michael N" sort="Hall, Michael N" uniqKey="Hall M" first="Michael N" last="Hall">Michael N. Hall</name>
<name sortKey="Inagaki, Fuyuhiko" sort="Inagaki, Fuyuhiko" uniqKey="Inagaki F" first="Fuyuhiko" last="Inagaki">Fuyuhiko Inagaki</name>
<name sortKey="Loewith, Robbie" sort="Loewith, Robbie" uniqKey="Loewith R" first="Robbie" last="Loewith">Robbie Loewith</name>
<name sortKey="Ohsumi, Yoshinori" sort="Ohsumi, Yoshinori" uniqKey="Ohsumi Y" first="Yoshinori" last="Ohsumi">Yoshinori Ohsumi</name>
<name sortKey="Suzuki, Nobuo N" sort="Suzuki, Nobuo N" uniqKey="Suzuki N" first="Nobuo N" last="Suzuki">Nobuo N. Suzuki</name>
<name sortKey="Wullschleger, Stephan" sort="Wullschleger, Stephan" uniqKey="Wullschleger S" first="Stephan" last="Wullschleger">Stephan Wullschleger</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Kamada, Yoshiaki" sort="Kamada, Yoshiaki" uniqKey="Kamada Y" first="Yoshiaki" last="Kamada">Yoshiaki Kamada</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001804 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001804 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16055732
   |texte=   Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16055732" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020